
After Brazil’s General Data Protection Law: Authorization in
Decentralized Web Applications

Jefferson O. Silva
silvajo@pucsp.br

Pontifical Catholic University of São
Paulo

São Paulo, Brazil

Newton Calegari
newton@nic.br

Brazilian Network Information
Center - NIC.br
São Paulo, Brazil

Eduardo S. Gomes
egomes@pucsp.br

Pontifical Catholic University of São
Paulo

São Paulo, Brazil

ABSTRACT
Decentralized web applications do not offer fine-grained access
controls to users’ data, which potentially creates openings for data
breaches. For software companies that need to comply with Brazil’s
General Data Protection Law (LGPD), data breaches not only might
harm application users but also could expose the companies to
hefty fines. In this context, engineering fine-grained authorization
controls (that comply with the LGPD) to decentralized web appli-
cation requires creating audit trails, possibly in the source code.
Although the literature offers some solutions, they are scattered.
We present Esfinge Guardian, an authorization framework that
completely separates authorization from other concerns, which
increases compliance with the LGPD. We conclude the work with a
brief discussion.

CCS CONCEPTS
• Software and its engineering → Software design engineer-
ing.

KEYWORDS
Access control; DecentralizedWebApplications; Frameworks; Guardian;
Solid
ACM Reference Format:
Jefferson O. Silva, Newton Calegari, and Eduardo S. Gomes. 2019. After
Brazil’s General Data Protection Law: Authorization in Decentralized Web
Applications. In Companion Proceedings of the 2019 World Wide Web Con-
ference (WWW ’19 Companion), May 13–17, 2019, San Francisco, CA, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3308560.3316461

1 INTRODUCTION
With the approval of the Brazilian General Data Protection Law
(LGPD, Portuguese acronym) [7], several software companies may
need to redesign the applications that handle the personal data
of Brazilian citizens. The LGPD considers personal any data that
directly or indirectly lead to the identification of a user [7]. Neglect-
ing the LGPD requirements could mean incurring in fines up to 2%
of companies’ global revenue [7].

The LGPD sets compliance requirements on the companies in
charge of making decisions about the data processing (i.e., data

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6675-5/19/05.
https://doi.org/10.1145/3308560.3316461

controllers) and the companies that process personal data in the
name of data controllers (i.e., data processors) [7]. Besides, the LGPD
states that, in some cases, data controllers and data processors may
be held liable, especially in cases where data breaches are harmful
to users [7].

To avoid being classified as either data processors or data con-
trollers (to avoid sanctions), some companies may redesign appli-
cations as decentralized web applications. In the context of this
research, an application is considered decentralized when it does
not hold users’ data. Berners-Lee and colleagues [12] proposed a
platform called Solid (derived from “Social linked data"), which can
be described as a set of principles, conventions, and tools for build-
ing decentralized web applications. Solid is based on the principle
that users should have full ownership of their data, which are stored
in Web-accessible personal online datastores (pods) [12]. Pods are
independent of web applications. For obtaining services, users need
to authorize web applications to access their pods explicitly, by
classifying web applications as trusted.

Using Solid alone leaves users solely responsible for controlling
access to protected resources, which may not be enough to comply
with the LGPD. The LGPD requirement of data governance (see Art.
50, Par. 2 in [7]) states that, among other things, companies should
establish adequate policies to protect users’ data. Nevertheless, in
Solid web applications, a user would not have the means to prevent
unauthorized access to their data, after classifying a web application
as trusted. For example, a hospital web application may have a
sensitive operation that reads personal data from patient’s pods that
should be accessible only by designated doctors. A violation of this
access control policy would configure a data breach, in which case
the hospital might still be held liable. Also, the liability risk might
create the need for audits, in which case it would be necessary that
the hospital demonstrated that it possesses appropriate controls,
possibly directly in source code.

This context indicates that it is necessary to engineer fine-grained
authorization controls, without loosing the simplicity required in
auditing the source code. Thus, we establish the following research
question (RQ).
RQ:How to design fine-grained authorization controls to de-
centralized web applications that comply with the LGPD re-
quirement of data governance?

The answer to our RQ may help companies to increase compli-
ance with the LGPD by employing several software engineering
techniques, which are implemented in Esfinge Guardian. With this
paper, we contribute to the literature in at least two ways. First, by
showing that the decentralization of a web application may not be
enough for companies to avoid liability issues. Second, by pointing

https://doi.org/10.1145/3308560.3316461
https://doi.org/10.1145/3308560.3316461

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA Silva et al.

the need for more research on how the use of Esfinge Guardian
(and others) could increase compliance with the LGPD (and other
regulations).

This work is organized as follows. In Chapter 2, we offer some
background. In Chapter 3, we present Esfinge Guardian. In Chapter
4, we offer a case example. In Chapter 5, we present some related
works. We conclude with a brief discussion in Chapter 6.

2 BACKGROUND
In this section, we offer some background for the understanding of
the research problem domain.

2.1 Brazil’s General Data Protection Law
The Brazil’s General Data Protection Law (LGPD) is based on the
General Data Protection Regulation (GDPR),1 which aims at pro-
tecting the personal data of EU individuals. In total, around 120
countries adopt comprehensive privacy laws and regulations to pro-
tect personal data held by private and public bodies [2]. The LGPD
applies to any individual or legal entity (public or private) with
personal data processing activities that: are carried out in Brazil;
offer or supply goods or services in Brazil or relate to individuals
located in Brazil, and; involve personal data collected in Brazil.

2.2 Decentralized Solid Web Applications
Traditional web applications (e.g., Facebook, CRMs, and hospital
applications) rely on private APIs, exclusive access control mech-
anisms, and dedicated data storage sytems. Because users cannot
move personal data to other platforms, these web applications be-
come “data silos." We refer to these web applications as centralized
[16].

Solid is a platform that supports decentralized web applications,
by relying on open standards and semantic web technologies [3].
In the Solid platform, applications run in a browser or as mobile
applications, while users data are stored in pods [4]. Although pods
can be stored locally, they typically are stored in dedicated servers,
which manage data according to the Linked Data Platform recom-
mendation, enabling it to manipulate data items through HTTP
requests [15]. Solid servers are application-agnostic and can deal
with both structured and unstructured data. Structured data is rep-
resented using RDF, a Semantic Web standard [4, 10]. Application
development based on Solid platform supports portability and inter-
operability, so applications can be seen as an interface that works
with distributed data in multiple pod server implementations.

Identity in the Solid context is based on WebID, which allows
agents (e.g., a person, an organization) to create their identities
using global unique identifiers - HTTP URIs [12]. A WebID is an
open and decentralized identification mechanism being developed
by a W3C community group.2

2.3 Authorization in Solid
Access control is typically split into two distinct procedures: au-
thentication, and authorization. While authentication is concerned
with determining whether an agent (e.g., user, group) is whom it
claims to be, authorization is responsible for verifying if the agent
1http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
2https://www.w3.org/community/webid/

is allowed to access a protected resource (e.g., document) or op-
eration (e.g., read, write, append). In this research, we focus on
authorization.

Solid uses the Web Access Control (WAC) specification for au-
thorizing the access to protected resources. According to the speci-
fication, WAC has the following key features:

(1) The resources are identified by URLs and can refer to any
web documents or resources;

(2) It is declarative – access control policies arewritten in regular
web documents;

(3) Users and groups are also identified by URLs (WebIDs);
(4) It is cross-domain – all of its components, such as resources,

agentWebIDs, and even the documents containing the access
control policies, can potentially reside on separate domains;

Contents of https://alice.databox.me/docs/file1.acl

@prefix acl: <http://www.w3.org/ns/auth/acl#> .

<#authorization1>

 a acl:Authorization;

 acl:agent <https://alice.databox.me/profile/card#me>; # Alice's WebID

 acl:accessTo <https://alice.databox.me/docs/file1>;

 acl:mode acl:Read,

 acl:Write,

 acl:Control.

Listing 1: Example WAC Document

Listing 1 shows an example of a WAC document that specifies
that Alice (as identified by her WebID https://alice.
databox.me/profile/card#me) has full access (read, write, and
control) to one of her web resources, located at https://
alice.databox.me/docs/file1.

Similarly, it is possible to give access to a group of agents us-
ing the acl:agentGroup predicate [1]. A group is a collection of
members (or WebIDs) that needs to be specified in a different file.
Moreover, it is possible to give access to all agents (public access)
or yet to all authenticated agents. Besides, it is also possible to clas-
sify web applications as trusted. Furthermore, not every document
needs its own individual access control list file. Rather, it is possi-
ble to authorize a container, which is a web location that contain
multiple resources. As mentioned, for controlling the access to the
data in their pods, users need to specify WAC documents. The set
of authorization modes that WAC access control systems offer does
not allow the specification of fine-grained authorizations, required
for decentralized web applications that needed to comply with the
LGPD.

3 ESFINGE GUARDIAN
In this section, we present the Esfinge Guardian3 framework. Essen-
tially, the Esfinge Guardian’s role is to intercept calls to protected
operations. Figure 1 depicts a hypothetical interception. As an ex-
ample, consider a protected operation debit(), which should only
be executed by the account owner. Esfinge Guardian would inter-
cept the call to debit(), and decide if the caller is authorized to
perform the operation.

Additionally, Figure 2 depicts Esfinge Guardian in a hypothet-
ical web decentralized hospital application. As depicted, Esfinge
3https://github.com/EsfingeFramework/guardian

http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
https://www.w3.org/community/webid/
https://github.com/EsfingeFramework/guardian

After Brazil’s GDPR: Authorization in Decentralized Web Applications WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA

Figure 1: A conceptualization of the interception mecha-
nism (Silva et al. [13])

Figure 2: Esfinge Guardian representation in a decentralized
web application

Guardian contains the authorization logic that will only allow au-
thorized HTTP requests to a patient’s pods. Besides, while Esfinge
Guardian is independent of decentralized web applications (and
consequentially of Solid), employing the framework may help these
applications increase compliance with LGPD. We stress that al-
though Figure 2 depicts Esfinge Guardian authorizing access to
pods based on roles, it can authorize in finer-grained levels.

Esfinge Guardian is composed of eight elements (see Guerra et al.
[9] and Silva et al.[13] for in-depth explanations). Figure 3 depicts
the relationship between the elements in UML.
AuthorizationContext. It is the central entity that holds all the
information required for an authorization, which includes the data
for the subject, resource, and environment. That means all other
entities should provide AuthorizationContext with enough in-
formation for authorization to occur.
GuardianInterceptor. Ideally, the user must be able to indicate
what operations should be protected and be oblivious of all other
things. A request to a protected operation must be intercepted
transparently, not directly called. GuardianInterceptor is the en-
tity responsible for abstracting the different existing interception
technologies such as aspect-orientation, CGLib, and dynamic proxy.
Invoker. The original request to the protected operation on the
resource is intercepted; therefore the mechanism must be in charge
of replicating the request to the resource if the access is granted.
Invoker is an entity with the ability to mimic the operation per-
formed by the subject on a protected resource. In the Esfinge
Guardian framework, this element can execute methods; however,
it is important to note that it is just one of the possibilities since
the architectural model is general.

One additional feature is that Invoker is responsible for deter-
mining when the authorization logic is performed. In many cases,

enforcing the authorization logic only makes sense after the pro-
tected operation is performed. For instance, consider the case when
the operation retrieves a collection, and the authorization rule re-
quires iterating it in order to verify if the subject can indeed access
all of its items. In this manner, there should be a way for configuring
the precise moment that the authorization should take place.
Populator. It is the entity that contains the data extraction logic
for authorization. Information for authorization can be anywhere
such as databases, files, shared variables, user session, arguments,
and the Internet. For this reason, Populator is an entity that knows
how to obtain information from all these places. There can be zero
or more Populators in the application; each one specialized in
obtaining a different type of information from a different place.
PopulatorProcessor. The entity that gathers and executes all de-
fined Populators in the application.
Authorizer. This is entity that implements the logic of the access
control policy andmay use information stored in AuthorizationContext
if necessary. Theremust be at least one Authorizer. Every Authorizer
respond in the form of a “yes" or “no;" however, it must be possible
to include other response types such as “Indeterminate."
AuthorizerProcessor. It is the entity that contains the combining
algorithm for all the Authorizers defined in the application.
AuthorizationMetada. This is an entity that indicateswhich resources—
or their operations—must be intercepted by the authorization mech-
anism. A requirement is that this element must be of metadata type
so that it can be used declaratively. Esfinge Guardian uses Java
annotations as the implementation of this element; however, it can
be considered a general marking element that is independent of a
specific technology.

4 RELATEDWORKS
This research combines topics usually addressed separately. We
are not aware of any research that addresses the LGPD from a
software engineering perspective. Alternatively, some researchers
studied approaches that map GDPR principles to software design.
For example, Danezis et al. [5] provided an inventory of privacy
design strategies and technical building blocks of various degrees
of maturity from research and development. Koops and Leenes [11]
discussed whether the GDPR Privacy-by-Design principle entails
hard-coding privacy requirements into applications. On decentral-
ized web applications, Berners-Lee [3] introduced the concept of
decentralized application architectures. Smith et al. [14] introduced
a functional decentralized application calledWebBox, while Dodson
et al. [6] presented Musubi, a disintermediated interactive social
feeds application for mobile devices. Concerning metadata-based
frameworks such as Esfinge Guardian, Guerra et al. [8] investigated
metadata usage in existing frameworks and documented recurrent
solutions as architectural patterns.

5 DISCUSSION AND CONCLUSION
The LGPD requires companies to adopt a comprehensive data gov-
ernance approach, including data profiling, data lineage, data mask-
ing, test-data management, and data archives. Also, specialized
professionals are required to design and handle personal data. In
this work, we show how Esfinge Guardian can be used to man-
age authorizations in decentralized web applications to increase

WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA Silva et al.

Figure 3: The Esfinge Guardian Class Diagram (Silva et al.[13])

compliance with the LGPD’s data governance requirements. Be-
sides the examples we offered, Esfinge Guardian could be used to
anonymize personal data, filtering information that could lead to
users identification.

ACKNOWLEDGMENTS
To the Brazilian Network Information Center (NIC.br) and the Web
Technologies Study Center (Ceweb.br) for supporting this research.

REFERENCES
[1] [n. d.]. Basic Access Control ontology. https://www.w3.org/ns/auth/acl{#}
[2] David Banisar. 2011. Data Protection Laws Around the World Map. SSRN

Electronic Journal (2011).
[3] Tim Berners-Lee. 2009. Socially Aware Cloud Storage. https://www.w3.org/

DesignIssues/CloudStorage.html
[4] David Berners-Lee, Tim and Chen, Yuhsin and Chilton, Lydia and Connolly,

Daniel and Dhanaraj, Ruth and Hollenbach, James and Lerer, Adam and Sheets.
2006. Tabulator: Exploring and Analyzing linked data on the Semantic Web. In
Proceedings of the 3textsuperscriptrd International Semantic Web User Interaction
Workshop.

[5] George Danezis, Josep Domingo-Ferrer, Marit Hansen, Jaap-Henk Hoepman,
Daniel Le Metayer, Rodica Tirtea, and Stefan Schiffner. 2015. Privacy and Data
Protection by Design - from policy to engineering. December (jan 2015).

[6] Ben Dodson, Ian Vo, T.J. Purtell, Aemon Cannon, and Monica Lam. 2012. Musubi:
Disintermediated Interactive Social Feeds for Mobile Devices. Proceedings of the
21st international conference on World Wide Web - WWW ’12 (2012), 211.

[7] Brazilian Government. 2018. General Data Protection Law. http://www.planalto.
gov.br/ccivil_03/_Ato2015-2018/2018/Lei/L13709.htm

[8] Eduardo Guerra, Clovis Fernandes, and Fábio Fagundes Silveira. 2010. Archi-
tectural patterns for metadata-based frameworks usage. Proceedings of the 17th
Conference on Pattern Languages of Programs - PLOP ’10 October 2010 (2010),
1–25.

[9] E M Guerra, J O Silva, and C T Fernandes. 2015. A Modularity and Extensibility
Analysis on Authorization Frameworks. 2, 1 (2015).

[10] James Hollenbach, Joe Presbrey, and Tim Berners-Lee. 2009. Using RDF metadata
to enable access control on the social semantic web. CEUR Workshop Proceedings
514 (2009).

[11] Bert-Jaap Koops and Ronald Leenes. 2014. Privacy regulation cannot be hard-
coded. A critical comment on the ‘privacy by design’ provision in data-protection
law. International Review of Law, Computers & Technology 28, 2 (may 2014),
159–171.

[12] Andrei Vlad Sambra, Essam Mansour, Sandro Hawke, Maged Zereba, Nicola
Greco, Abdurrahman Ghanem, Dmitri Zagidulin, Ashraf Aboulnaga, and Tim
Berners-Lee. [n. d.]. Solid: A Platform for Decentralized Social Applications
Based on Linked Data. ([n. d.]).

[13] J.O. Silva, E.M. Guerra, and C.T. Fernandes. 2013. An extensible and decoupled
architectural model for authorization frameworks. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics). Vol. 7974 LNCS.

[14] Daniel Alexander Smith, Max Van Kleek, Oshani Seneviratne, Monica schraefel,
Alexandre Bertails, Tim Berners-Lee, Wendy Hall, and Nigel Shadbolt. 2012.

WebBox: Supporting Decentralised and Privacy-respecting Micro-sharing with
Existing Web Standards. In 21st International World Wide Web Conference.

[15] Ashok Malhotra Steve Speicher, John Arwe. 2015. Linked Data Platform 1.0. W3C
Recommendation. https://w3.org/TR/ldp/

[16] Max Van Kleek, Daniel Smith, Nigel Shadbolt, and M.c. Schraefel. 2012. A de-
centralized architecture for consolidating personal information ecosystems: The
WebBox. Pim 2012 (2012).

https://www.w3.org/ns/auth/acl{#}
https://www.w3.org/DesignIssues/CloudStorage.html
https://www.w3.org/DesignIssues/CloudStorage.html
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/L13709.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2018/Lei/L13709.htm
https://w3.org/TR/ldp/

	Abstract
	1 Introduction
	2 Background
	2.1 Brazil's General Data Protection Law
	2.2 Decentralized Solid Web Applications
	2.3 Authorization in Solid

	3 Esfinge Guardian
	4 Related Works
	5 Discussion and Conclusion
	Acknowledgments
	References

